Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1969, Volume 6, Issue 1, Pages 115–117 (Mi mzm6904)  

Uniqueness theorem for convex surfaces

Yu. E. Anikonov

Computer Centre of USSR Academy of Sciences, Siberian Branch
Abstract: A proof is given of the following assertion: two closed convex analytic surfaces in three-dimensional Euclidean space are equal if their areas and lengths of boundaries of orthogonal projections onto any plane coincide.
Received: 04.09.1967
English version:
Mathematical Notes, 1969, Volume 6, Issue 1, Pages 528–529
DOI: https://doi.org/10.1007/BF01450259
Bibliographic databases:
UDC: 513.78
Language: Russian
Citation: Yu. E. Anikonov, “Uniqueness theorem for convex surfaces”, Mat. Zametki, 6:1 (1969), 115–117; Math. Notes, 6:1 (1969), 528–529
Citation in format AMSBIB
\Bibitem{Ani69}
\by Yu.~E.~Anikonov
\paper Uniqueness theorem for convex surfaces
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 1
\pages 115--117
\mathnet{http://mi.mathnet.ru/mzm6904}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=248691}
\zmath{https://zbmath.org/?q=an:0202.21701}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 1
\pages 528--529
\crossref{https://doi.org/10.1007/BF01450259}
Linking options:
  • https://www.mathnet.ru/eng/mzm6904
  • https://www.mathnet.ru/eng/mzm/v6/i1/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :144
    References:4
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025