|
|
Matematicheskie Zametki, 1969, Volume 6, Issue 4, Pages 451–462
(Mi mzm6952)
|
|
|
|
On the order of partial sums of general orthogonal series
R. S. Davtyan Institute of Mathematics and Mechanics, Academy of Sciences of Armenian SSR
Abstract:
It is shown that for convergence of every orthonormal system $\{\varphi_n(s)\}$ given on $[0,1]$, it is necessary and sufficient that, under the condition $\int_0^\infty\frac1{W^2(x)}dx<+\infty$ on tlie increasing function $W(x)$ and for $\sum_{n=1}^\infty a_n^2=+\infty$ there hold $\left|\sum_{k=1}^na_k\varphi_k(x)\right|=o(W(\sum_1^ka_k^2))$ almost everywhere on $[0,1]$.
Received: 13.01.1969
Citation:
R. S. Davtyan, “On the order of partial sums of general orthogonal series”, Mat. Zametki, 6:4 (1969), 451–462; Math. Notes, 6:4 (1969), 725–732
Linking options:
https://www.mathnet.ru/eng/mzm6952 https://www.mathnet.ru/eng/mzm/v6/i4/p451
|
| Statistics & downloads: |
| Abstract page: | 214 | | Full-text PDF : | 97 | | References: | 4 | | First page: | 1 |
|