|
|
Matematicheskie Zametki, 1969, Volume 6, Issue 4, Pages 475–481
(Mi mzm6954)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
Best quadrature formulas on classes of differentiable periodic functions
N. E. Lushpai Dnepropetrovsk State University
Abstract:
A solution is given to the problem of finding the best quadrature formula among formulas of the form
$$
\int_0^{2\pi}f(x)\,dx\approx\sum_{k=0}^{m-1}\sum_{l=0}^\rho p_{k,l}f^{(l)}(x_k)
$$
which are exact in the case of a constant, for $\rho=r-1$, $r=1,2,3,\dots$ and $\rho=r-2$, $r$ even, for the classes $W^{(r)}L_qM$ of $2\pi$-periodic functions.
Received: 09.12.1968
Citation:
N. E. Lushpai, “Best quadrature formulas on classes of differentiable periodic functions”, Mat. Zametki, 6:4 (1969), 475–481; Math. Notes, 6:4 (1969), 740–744
Linking options:
https://www.mathnet.ru/eng/mzm6954 https://www.mathnet.ru/eng/mzm/v6/i4/p475
|
|