|
|
Matematicheskie Zametki, 1971, Volume 9, Issue 6, Pages 687–692
(Mi mzm7054)
|
|
|
|
Verbal subgroups of complete direct products of groups
S. A. Ashmanov M. V. Lomonosov Moscow State University
Abstract:
It is proved that if $V(X)$ is a proper verbal subgroup of a free group $X$ of countable rank, then a verbal subgroup $V(H)$ of the complete direct product $H=\widetilde\Pi^\times X_i$ of a countable number of isomorphic copies $X_i$ of $X$ differs from the complete direct product $\widetilde\Pi^\times V(X_i)$.
Received: 20.01.1970
Citation:
S. A. Ashmanov, “Verbal subgroups of complete direct products of groups”, Mat. Zametki, 9:6 (1971), 687–692; Math. Notes, 9:6 (1971), 399–401
Linking options:
https://www.mathnet.ru/eng/mzm7054 https://www.mathnet.ru/eng/mzm/v9/i6/p687
|
|