|
On a theorem of Jackson
A. N. Davidchik, A. A. Ligun Dnepropetrovsk State University, USSR
Abstract:
We prove that
$$
\inf_{L_n\in Z_n}\sup_\omega\,^*\sup_{f\in H_\omega}\frac{\|f-L_n(f)\|}{\omega(\frac\pi{n+1})}=1\quad(n=0,1,2,\dots),
$$
where $\inf\limits_{L_n\in Z_n}$ is taken over all linear polynomial approximation methods of degree not higher than $n$ and $\sup\limits_\omega{}^*$ over all convex moduli of continuity $\omega(\delta)$.
Received: 26.01.1973
Citation:
A. N. Davidchik, A. A. Ligun, “On a theorem of Jackson”, Mat. Zametki, 16:5 (1974), 681–690; Math. Notes, 16:5 (1974), 1001–1007
Linking options:
https://www.mathnet.ru/eng/mzm7164 https://www.mathnet.ru/eng/mzm/v16/i5/p681
|
| Statistics & downloads: |
| Abstract page: | 217 | | Full-text PDF : | 113 | | References: | 4 | | First page: | 1 |
|