Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 16, Issue 5, Pages 681–690 (Mi mzm7164)  

On a theorem of Jackson

A. N. Davidchik, A. A. Ligun

Dnepropetrovsk State University, USSR
Abstract: We prove that
$$ \inf_{L_n\in Z_n}\sup_\omega\,^*\sup_{f\in H_\omega}\frac{\|f-L_n(f)\|}{\omega(\frac\pi{n+1})}=1\quad(n=0,1,2,\dots), $$
where $\inf\limits_{L_n\in Z_n}$ is taken over all linear polynomial approximation methods of degree not higher than $n$ and $\sup\limits_\omega{}^*$ over all convex moduli of continuity $\omega(\delta)$.
Received: 26.01.1973
English version:
Mathematical Notes, 1974, Volume 16, Issue 5, Pages 1001–1007
DOI: https://doi.org/10.1007/BF01149787
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. N. Davidchik, A. A. Ligun, “On a theorem of Jackson”, Mat. Zametki, 16:5 (1974), 681–690; Math. Notes, 16:5 (1974), 1001–1007
Citation in format AMSBIB
\Bibitem{DavLig74}
\by A.~N.~Davidchik, A.~A.~Ligun
\paper On a~theorem of Jackson
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 5
\pages 681--690
\mathnet{http://mi.mathnet.ru/mzm7164}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=402379}
\zmath{https://zbmath.org/?q=an:0314.42004}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 5
\pages 1001--1007
\crossref{https://doi.org/10.1007/BF01149787}
Linking options:
  • https://www.mathnet.ru/eng/mzm7164
  • https://www.mathnet.ru/eng/mzm/v16/i5/p681
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :113
    References:4
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025