Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 16, Issue 5, Pages 691–701 (Mi mzm7165)  

This article is cited in 11 scientific papers (total in 11 papers)

On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels

V. K. Dzyadyk

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract: In the metrics $C$ and $L$ we solve the problem of best approximation by trigonometric polynomials in classes of continuous periodic functions $f(x)$ of the form
$$f(x)=\frac1n\int^{2\pi}_0K(t)\varphi(x-t)\,dt,$$
where the kernel $K(t)$ is a periodic integral of a linear combination of functions that are absolutely monotonic in the intervals $(-\infty,2\pi)$ and $(0,\infty), and $\|\varphi\|\le1$.
A~particular case of such kernels for any $s>0$ and $\alpha\in(-\infty,+\infty)$ are kernels of the form $$K(t)=\sum^\infty_{k=1}\frac{\cos(kt-\frac{\alpha\pi}2)}{k^s},$$ which for $\alpha=s$ generate classes of periodic functions with a bounded $s$-th derivative in the sense of Weyl, whereas for $\alpha=s+1$ they generate conjugate classes. For various values of $s$ and $\alpha$, apart from the case $s\in(0,1)$ and $\alpha\in[0,2]\setminus[s,2-s]$, such kernels were studied by various investigators (see [1-?12]).
Received: 21.01.1974
English version:
Mathematical Notes, 1974, Volume 16, Issue 5, Pages 1008–1014
DOI: https://doi.org/10.1007/BF01149788
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. K. Dzyadyk, “On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels”, Mat. Zametki, 16:5 (1974), 691–701; Math. Notes, 16:5 (1974), 1008–1014
Citation in format AMSBIB
\Bibitem{Dzy74}
\by V.~K.~Dzyadyk
\paper On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 5
\pages 691--701
\mathnet{http://mi.mathnet.ru/mzm7165}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=380212}
\zmath{https://zbmath.org/?q=an:0308.42001}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 5
\pages 1008--1014
\crossref{https://doi.org/10.1007/BF01149788}
Linking options:
  • https://www.mathnet.ru/eng/mzm7165
  • https://www.mathnet.ru/eng/mzm/v16/i5/p691
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:458
    Full-text PDF :148
    References:4
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025