|
This article is cited in 6 scientific papers (total in 6 papers)
Optimal rate of integration and $\varepsilon$-entropy of a class of analytic functions
B. D. Boyanovab a M. V. Lomonosov Moscow State University
b Sofia University
Abstract:
The author considers a class $F$ of analytic functions real in the interval $[-1,1]$ and bounded in the unit circle. As an estimate of the optimal quadrature error $R(n)$ over the class $F$ it is shown that
$$
e^{\left(-2\sqrt2+\frac1{\sqrt2}\right)\pi\sqrt n}\le R(n)\le e{-\frac\pi{\sqrt2}n}.
$$
With the additional condition that $\max\limits_{x\in[-1,1]}|f(x)|\le B$, an estimate is obtained for the $\varepsilon$-entropy $H_\varepsilon(F)$:
$$
\frac8{27}\frac{(\ln2)^2}{\pi^2}\le\lim\frac{H_\varepsilon(F)}{(\log\frac1\varepsilon)^3}\le\frac2{\pi^2}(\ln2)^2.
$$
Received: 27.12.1972
Citation:
B. D. Boyanov, “Optimal rate of integration and $\varepsilon$-entropy of a class of analytic functions”, Mat. Zametki, 14:1 (1973), 3–10; Math. Notes, 14:1 (1973), 551–556
Linking options:
https://www.mathnet.ru/eng/mzm7197 https://www.mathnet.ru/eng/mzm/v14/i1/p3
|
|