Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 1, Pages 21–30 (Mi mzm7199)  

This article is cited in 8 scientific papers (total in 8 papers)

Exact constants of approximation for differentiable periodic functions

A. A. Ligun

Dnepropetrovsk State University
Full-text PDF (553 kB) Citations (8)
Abstract: For all odd $r$ we construct a linear operator $B_{n,r}(f)$ which maps the set of $2\pi$-periodic functions $f(t)\in X^{(r)}$ ($X^{(r)}=X^{(r)}$ or $L_1^{(r)}$) into a set of trigonometric polynomials of order not higher than $n-1$ such that
$$ \sup_{f\in X^{(r)}}\frac{n^rE_n(f)_X}{\omega(f^{(r)},\pi/n)_X}=\sup_{f\in X^{(r)}}\frac{n^r\|f-B_{n,r}(f)\|_X}{\omega(f^{(r)},\pi/n)_X}=\frac{K_r}2, $$
where $X$ is the $C$ or $L_1$ metric, $E_n(f)_X$ and $\omega(f,\delta)_X$ are the best approximation by means of trigonometric polynomials of order not higher than $n-1$ and the modulus of continuity of the function $f$ in the $X$ metric, respectively; $K_r$ are the known Favard constants.
English version:
Mathematical Notes, 1973, Volume 14, Issue 1, Pages 563–569
DOI: https://doi.org/10.1007/BF01095770
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. A. Ligun, “Exact constants of approximation for differentiable periodic functions”, Mat. Zametki, 14:1 (1973), 21–30; Math. Notes, 14:1 (1973), 563–569
Citation in format AMSBIB
\Bibitem{Lig73}
\by A.~A.~Ligun
\paper Exact constants of approximation for differentiable periodic functions
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 1
\pages 21--30
\mathnet{http://mi.mathnet.ru/mzm7199}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=330880}
\zmath{https://zbmath.org/?q=an:0281.42001}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 1
\pages 563--569
\crossref{https://doi.org/10.1007/BF01095770}
Linking options:
  • https://www.mathnet.ru/eng/mzm7199
  • https://www.mathnet.ru/eng/mzm/v14/i1/p21
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025