|
Banach spaces in which a theorem of Orlicz is not true
S. A. Rakov Kharkiv State University
Abstract:
Let the Banach space $X$ be such that for every numerical sequencet $l_n\searrow0$ there exists in $X$ an unconditionally convergent series $\Sigma x_n$, the terms of which are subject to the condition $\|x_n\|=t_n$ ($n=1,2,\dots$). Then
$$\sup_n\inf_{X_n}d(X_n,l_\infty^{(n)})<\infty,$$
where $X_n$ ranges over all the $n$-dimensional subspaces of $X$.
Received: 07.02.1972
Citation:
S. A. Rakov, “Banach spaces in which a theorem of Orlicz is not true”, Mat. Zametki, 14:1 (1973), 101–106; Math. Notes, 14:1 (1973), 613–616
Linking options:
https://www.mathnet.ru/eng/mzm7209 https://www.mathnet.ru/eng/mzm/v14/i1/p101
|
|