Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 17, Issue 2, Pages 245–254 (Mi mzm7243)  

Poincaré series

G. I. Gusev

Saratov State University, USSR
Abstract: Let $N_\alpha$ denote the number of solutions to the congruence $F(x_i,\dots,x_m)\equiv\pmod{p^\alpha}$ for a polynomial $F(x_i,\dots,x_m)$ with integral $p$-adic coefficients. We examine the series $\varphi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ called the Poincaré series for the polynomial $F$. In this work we prove the rationality of the series $\varphi(t)$ for a class of isometrically equivalent polynomials of $m$ variables, $m\ge2$, containing the sum of two forms $\varphi_n(x,y)+\varphi_{n+1}(x,y)$ respectively of degrees $n$ and $n+1$, $n\ge2$. In particular the Poincaré series for any third degree polynomial $F_3(x,y)$ (over the set of unknowns) with integral $p$-adic coefficients is a rational function of $t$.
Received: 02.04.1973
English version:
Mathematical Notes, 1975, Volume 17, Issue 2, Pages 142–147
DOI: https://doi.org/10.1007/BF01161870
Bibliographic databases:
UDC: 512
Language: Russian
Citation: G. I. Gusev, “Poincaré series”, Mat. Zametki, 17:2 (1975), 245–254; Math. Notes, 17:2 (1975), 142–147
Citation in format AMSBIB
\Bibitem{Gus75}
\by G.~I.~Gusev
\paper Poincar\'e series
\jour Mat. Zametki
\yr 1975
\vol 17
\issue 2
\pages 245--254
\mathnet{http://mi.mathnet.ru/mzm7243}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=422220}
\zmath{https://zbmath.org/?q=an:0317.10024}
\transl
\jour Math. Notes
\yr 1975
\vol 17
\issue 2
\pages 142--147
\crossref{https://doi.org/10.1007/BF01161870}
Linking options:
  • https://www.mathnet.ru/eng/mzm7243
  • https://www.mathnet.ru/eng/mzm/v17/i2/p245
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025