Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 15, Issue 4, Pages 603–612 (Mi mzm7384)  

Transformations in hypercomplex Riemannian spaces

V. V. Navrozov

Kirov Polytechnic Institute
Abstract: It is well known that an integrable regular $H$-structure induces on a real manifold $M_n$ the structure of a hypercomplex analytic manifold ($h$-manifold) $\mathop M\limits^*{}_m$. We prove that the Lie derivative of a pure tensor $T$ on $M_n$ is an $h$-derivative of Lie providing $T$ is $h$-analytic. With the $h$-derivative of Lie there is associated on $\mathop M\limits^*{}_m$ the hypercomplex derivative of Lie. This enables us to associate to the motions and affine collineations in the Riemannian space $\mathop V\limits^*{}_m$ corresponding transformations in a real space $V_n$.
Received: 15.06.1973
English version:
Mathematical Notes, 1974, Volume 15, Issue 4, Pages 356–361
DOI: https://doi.org/10.1007/BF01095128
Bibliographic databases:
UDC: 513
Language: Russian
Citation: V. V. Navrozov, “Transformations in hypercomplex Riemannian spaces”, Mat. Zametki, 15:4 (1974), 603–612; Math. Notes, 15:4 (1974), 356–361
Citation in format AMSBIB
\Bibitem{Nav74}
\by V.~V.~Navrozov
\paper Transformations in hypercomplex Riemannian spaces
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 4
\pages 603--612
\mathnet{http://mi.mathnet.ru/mzm7384}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=350652}
\zmath{https://zbmath.org/?q=an:0316.53031}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 4
\pages 356--361
\crossref{https://doi.org/10.1007/BF01095128}
Linking options:
  • https://www.mathnet.ru/eng/mzm7384
  • https://www.mathnet.ru/eng/mzm/v15/i4/p603
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :86
    References:4
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025