|
This article is cited in 2 scientific papers (total in 2 papers)
On the logarithmic derivative of a meromorphic function
A. S. Kolokol'nikov Khar'kov State University, USSR
Abstract:
We derive the following estimate for the quantity $m\bigl(r,\frac{f'}f\bigr)$ of the Nevanlinna theory of the distribution of values characterizing the growth of the logarithmic derivative of a meromorphic function $f(z)$, $f(0)=1$, $0<r<R<\infty$:
$$
m\bigl(r,\frac{f'}f\bigr)<\ln+\biggl[\frac{T(R,f)}r\Bigl(\frac R{R-r}\Bigr)^2\biggr]+6,0684.
$$ This estimate is more accurate than that obtained earlier by Vu Ngoyan and I. V. Ostrovskii.
Received: 07.05.1973
Citation:
A. S. Kolokol'nikov, “On the logarithmic derivative of a meromorphic function”, Mat. Zametki, 15:5 (1974), 711–718; Math. Notes, 15:5 (1974), 425–429
Linking options:
https://www.mathnet.ru/eng/mzm7398 https://www.mathnet.ru/eng/mzm/v15/i5/p711
|
|