|
An inequality for a functional on aging distribution functions
O. P. Vinogradov M. V. Lomonosov Moscow State University
Abstract:
We prove an inequality for a functional on aging distribution functions $F(t)$, which makes it possible to obtain inequalities for $m_r=\int_0^\infty t^r\,dF(t)$. We show that if $\bigl[\frac{m_r}{r!}\bigr]^{r+1}=\bigl[{m_{r+1}}{(r+1)!}\bigr]^r$ for some $r\ge1$, then $F(t)=1-e^{-\lambda t}$; in addition we give upper and lower bounds for the integral $\int_0^\infty e^{-st}[1-F(t)]\,dt$ expressed in terms of $m_1$ and $m_2$.
Received: 29.12.1972
Citation:
O. P. Vinogradov, “An inequality for a functional on aging distribution functions”, Mat. Zametki, 16:3 (1974), 461–466; Math. Notes, 16:3 (1974), 863–866
Linking options:
https://www.mathnet.ru/eng/mzm7482 https://www.mathnet.ru/eng/mzm/v16/i3/p461
|
| Statistics & downloads: |
| Abstract page: | 223 | | Full-text PDF : | 84 | | References: | 4 | | First page: | 1 |
|