Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 16, Issue 4, Pages 623–632 (Mi mzm7503)  

Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$

A. N. Todorov
Abstract: In [1] E. Bombieri showed that $|4K|$ always yields a holomorphic map for surfaces of fundamental type and that $|3K|$ does not yield a holomorphic map for such surfaces with $p_g=2$ and $c_1^2|X|=1$. In this note we prove the existence of such surfaces and give a complete description of them. We prove that Torelli's local theorem is true, i.e., that the mapping of periods from the space of moduli into the space of periods is étale; we calculate the number of moduli and we show that the space of moduli is nonsingular.
Received: 02.08.1973
English version:
Mathematical Notes, 1974, Volume 16, Issue 4, Pages 964–968
DOI: https://doi.org/10.1007/BF01104265
Bibliographic databases:
UDC: 513
Language: Russian
Citation: A. N. Todorov, “Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$”, Mat. Zametki, 16:4 (1974), 623–632; Math. Notes, 16:4 (1974), 964–968
Citation in format AMSBIB
\Bibitem{Tod74}
\by A.~N.~Todorov
\paper Surfaces of fundamental type with geometric genus 2 and $c_1^2|X|=1$
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 4
\pages 623--632
\mathnet{http://mi.mathnet.ru/mzm7503}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=389923}
\zmath{https://zbmath.org/?q=an:0309.14030}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 4
\pages 964--968
\crossref{https://doi.org/10.1007/BF01104265}
Linking options:
  • https://www.mathnet.ru/eng/mzm7503
  • https://www.mathnet.ru/eng/mzm/v16/i4/p623
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025