Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 17, Issue 4, Pages 545–553 (Mi mzm7573)  

Recovery of a function from the coefficients of its Dirichlet series

V. V. Napalkov

Bashkir Branch, Academy of Sciences of the USSR
Abstract: Let $L(\lambda)$ be an entire function of exponential type, let $\gamma(t)$ be the function associated with $L(\lambda)$ in the sense of Borel, let $\overline D$ be the smallest closed convex set containing all the singular points of $\gamma(t)$, let $\lambda_0,\lambda_1,\dots,\lambda_n\dots$ be the simple zeros of $L(\lambda)$, and let A $\overline D$ be the space of functions analytic on $\overline D$ with the topology of the inductive limit. With an arbitrary $f(z)\in A(\overline D)$ we can associate the series
\begin{gather*} f(z)\sim\sum_{n=0}^\infty a_ne^{\lambda_nz},\quad a_n=\frac{\omega_L(\lambda_n,f)}{L'(\lambda_n)}, \\ \omega_L(\mu,f)=\frac1{2\pi i}\int_\mathscr C\gamma(t)\int_0^tF(t-\eta)e^{\mu\eta}\,d\eta\,dt, \end{gather*}
where $\mathscr C$ is a closed contour containing $\overline D$ , on and inside of which $f(z)$ is analytic. We give a method of recovering $f(z)$ from the Dirichlet coefficients $a_n$.
Received: 15.11.1973
English version:
Mathematical Notes, 1974, Volume 17, Issue 4, Pages 321–326
DOI: https://doi.org/10.1007/BF01105382
Bibliographic databases:
UDC: 517
Language: Russian
Citation: V. V. Napalkov, “Recovery of a function from the coefficients of its Dirichlet series”, Mat. Zametki, 17:4 (1975), 545–553; Math. Notes, 17:4 (1974), 321–326
Citation in format AMSBIB
\Bibitem{Nap75}
\by V.~V.~Napalkov
\paper Recovery of a~function from the coefficients of its Dirichlet series
\jour Mat. Zametki
\yr 1975
\vol 17
\issue 4
\pages 545--553
\mathnet{http://mi.mathnet.ru/mzm7573}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=402017}
\zmath{https://zbmath.org/?q=an:0315.30009|0315.30008}
\transl
\jour Math. Notes
\yr 1974
\vol 17
\issue 4
\pages 321--326
\crossref{https://doi.org/10.1007/BF01105382}
Linking options:
  • https://www.mathnet.ru/eng/mzm7573
  • https://www.mathnet.ru/eng/mzm/v17/i4/p545
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025