Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 4, Pages 547–557
DOI: https://doi.org/10.4213/mzm7699
(Mi mzm7699)
 

This article is cited in 3 scientific papers (total in 3 papers)

Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions

Yu. E. Linke

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (476 kB) Citations (3)
References:
Abstract: We study Fréchet's problem of the universal space for the subdifferentials $\partial P$ of continuous sublinear operators $P\colon V\to BC(X)_{\sim}$ which are defined on separable Banach spaces $V$ and range in the cone $BC(X)_\sim$ of bounded lower semicontinuous functions on a normal topological space $X$. We prove that the space of linear compact operators $L^{\mathrm c}(\ell^2,C(\beta X))$ is universal in the topology of simple convergence. Here $\ell^2$ is a separable Hilbert space, and $\beta X$ is the Stone–Ĉech compactification of $X$. We show that the images of subdifferentials are also subdifferentials of sublinear operators.
Keywords: sublinear operator, subdifferential, topology of simple convergence, lower semicontinuous function, Fréchet problem for universal spaces, separable Banach space, continuous selection.
Received: 24.12.2008
Revised: 18.11.2010
English version:
Mathematical Notes, 2011, Volume 89, Issue 4, Pages 519–527
DOI: https://doi.org/10.1134/S0001434611030230
Bibliographic databases:
Document Type: Article
UDC: 517.982+517.988
Language: Russian
Citation: Yu. E. Linke, “Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions”, Mat. Zametki, 89:4 (2011), 547–557; Math. Notes, 89:4 (2011), 519–527
Citation in format AMSBIB
\Bibitem{Lin11}
\by Yu.~E.~Linke
\paper Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 4
\pages 547--557
\mathnet{http://mi.mathnet.ru/mzm7699}
\crossref{https://doi.org/10.4213/mzm7699}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2856746}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 4
\pages 519--527
\crossref{https://doi.org/10.1134/S0001434611030230}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290038700023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955597728}
Linking options:
  • https://www.mathnet.ru/eng/mzm7699
  • https://doi.org/10.4213/mzm7699
  • https://www.mathnet.ru/eng/mzm/v89/i4/p547
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025