Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 3, Pages 365–377
DOI: https://doi.org/10.4213/mzm7835
(Mi mzm7835)
 

The al-Husayn Equation $x^4+y^2=z^2$

S. Sh. Kozhegel'dinov

Semipalatinsk State Pedagogical Institute
References:
Abstract: We study the set of all natural solutions of the equation $x^4+y^2=z^2$, obtain general formulas describing all such solutions, and prove their equivalence.
Keywords: the al-Husayn equation $x^4+y^2=z^2$, Diophantine equation, Pythagorean triangle, arithmetical function.
Received: 27.04.2009
English version:
Mathematical Notes, 2011, Volume 89, Issue 3, Pages 349–360
DOI: https://doi.org/10.1134/S0001434611030060
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: S. Sh. Kozhegel'dinov, “The al-Husayn Equation $x^4+y^2=z^2$”, Mat. Zametki, 89:3 (2011), 365–377; Math. Notes, 89:3 (2011), 349–360
Citation in format AMSBIB
\Bibitem{Koz11}
\by S.~Sh.~Kozhegel'dinov
\paper The al-Husayn Equation $x^4+y^2=z^2$
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 3
\pages 365--377
\mathnet{http://mi.mathnet.ru/mzm7835}
\crossref{https://doi.org/10.4213/mzm7835}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2856718}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 3
\pages 349--360
\crossref{https://doi.org/10.1134/S0001434611030060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290038700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955576945}
Linking options:
  • https://www.mathnet.ru/eng/mzm7835
  • https://doi.org/10.4213/mzm7835
  • https://www.mathnet.ru/eng/mzm/v89/i3/p365
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025