Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 3, Pages 351–360 (Mi mzm8150)  

This article is cited in 1 scientific paper (total in 1 paper)

Problem of correctness of the best approximation in the space of continuous functions

A. V. Kolushov

M. V. Lomonosov Moscow State University
Full-text PDF (591 kB) Citations (1)
Abstract: Let $W^rH_\omega$ the subclass of those functions of $C^r[a,b]$, for which $\omega(f^{(r)},\delta)\le\omega(\delta)$, where $\omega(\delta)$ is a given modulus of continuity, and $P_n$ be the space of algebraic polynomials of degree at most $n$ and $\pi_n(f)$ be the polynomial of best approximation for $f(x)$ on $[a,b]$. Estimates for
$$ A_1(\varepsilon)=\sup_{f\in W^rH_\omega}\sup_{\substack{q_n\in P_n\\\|f-q_n\|\le\|f-\pi_n(f)\|+\varepsilon}}\|\pi_n(f)-q_n\|, $$
and moduli of continuity of the operators of best approximation on $W^rH_\omega$ are established. For example, if $\omega(\delta)=\delta^\alpha$, then
\begin{alignat*}{2} A_1(\varepsilon)&\asymp\varepsilon^{(r+\alpha)/(n+r+\alpha)}&&\quad\text{for }\varepsilon<1, \\ A_1(\varepsilon)&\asymp\varepsilon&&\quad\text{for }\varepsilon>1. \end{alignat*}
Received: 15.06.1976
English version:
Mathematical Notes, 1978, Volume 23, Issue 3, Pages 190–195
DOI: https://doi.org/10.1007/BF01651430
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. V. Kolushov, “Problem of correctness of the best approximation in the space of continuous functions”, Mat. Zametki, 23:3 (1978), 351–360; Math. Notes, 23:3 (1978), 190–195
Citation in format AMSBIB
\Bibitem{Kol78}
\by A.~V.~Kolushov
\paper Problem of correctness of the best approximation in the space of continuous functions
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 3
\pages 351--360
\mathnet{http://mi.mathnet.ru/mzm8150}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=493052}
\zmath{https://zbmath.org/?q=an:0423.41013|0401.41032}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 3
\pages 190--195
\crossref{https://doi.org/10.1007/BF01651430}
Linking options:
  • https://www.mathnet.ru/eng/mzm8150
  • https://www.mathnet.ru/eng/mzm/v23/i3/p351
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025