Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 4, Pages 596–602
DOI: https://doi.org/10.4213/mzm8462
(Mi mzm8462)
 

This article is cited in 41 scientific papers (total in 41 papers)

Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain

K. B. Sabitov

Sterlitamak Branch of Academy of Sciences of Bashkortostan
References:
Abstract: For an equation of mixed type, namely,
$$ (1-\operatorname{sgn}t)u_{tt}+(1-\operatorname{sgn}t)u_{t}-2u_{xx}=0 $$
in the domain $\{(x,t)\mid0<x<1,\,-\alpha<t<\beta\}$, where $\alpha$, $\beta$ are given positive real numbers, we study the problem with boundary conditions
$$ u(0,t)=u(1,t)=0,\quad -\alpha\le t\le\beta,\qquad u(x,-\alpha)-u(x,\beta)=\varphi(x),\quad 0\le x\le1. $$
We establish a uniqueness criterion for the solution constructed as the sum of Fourier series. We establish the stability of the solution with respect to its nonlocal condition $\varphi(x)$.
Keywords: parabolic-hyperbolic equation, nonlocal condition, Fourier series, initial boundary-value problem, differential equation, Weierstrass test.
Received: 22.05.2009
English version:
Mathematical Notes, 2011, Volume 89, Issue 4, Pages 562–567
DOI: https://doi.org/10.1134/S0001434611030278
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: K. B. Sabitov, “Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain”, Mat. Zametki, 89:4 (2011), 596–602; Math. Notes, 89:4 (2011), 562–567
Citation in format AMSBIB
\Bibitem{Sab11}
\by K.~B.~Sabitov
\paper Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 4
\pages 596--602
\mathnet{http://mi.mathnet.ru/mzm8462}
\crossref{https://doi.org/10.4213/mzm8462}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2856750}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 4
\pages 562--567
\crossref{https://doi.org/10.1134/S0001434611030278}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290038700027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955582803}
Linking options:
  • https://www.mathnet.ru/eng/mzm8462
  • https://doi.org/10.4213/mzm8462
  • https://www.mathnet.ru/eng/mzm/v89/i4/p596
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025