Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 2, Pages 163–174
DOI: https://doi.org/10.4213/mzm8587
(Mi mzm8587)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Global Structure of Locally Convex Hypersurfaces in Finsler–Hadamard Manifolds

A. A. Borisenko, E. A. Olin

V. N. Karazin Kharkiv National University
Full-text PDF (485 kB) Citations (3)
References:
Abstract: Locally convex compact immersed hypersurfaces in the Finsler–Hadamard space with bounded $T$-curvature are considered. Under certain conditions on normal curvatures, such hypersurfaces are proved to be convex, embedded, and homeomorphic to the sphere. To this end, the Rauch theorem is generalized to exponential maps of hypersurfaces and the convexity of parallel hypersurfaces is proved.
Keywords: Riemannian manifold, Rauch comparison theorem, Finsler metric, Gaussian, sectional, normal curvature, locally convex immersion, $T$-curvature, parallel hypersurface, Levi-Cività connection.
Received: 02.02.2009
Revised: 16.06.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 2, Pages 155–164
DOI: https://doi.org/10.1134/S0001434610010232
Bibliographic databases:
UDC: 514.763.624
Language: Russian
Citation: A. A. Borisenko, E. A. Olin, “The Global Structure of Locally Convex Hypersurfaces in Finsler–Hadamard Manifolds”, Mat. Zametki, 87:2 (2010), 163–174; Math. Notes, 87:2 (2010), 155–164
Citation in format AMSBIB
\Bibitem{BorOli10}
\by A.~A.~Borisenko, E.~A.~Olin
\paper The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 2
\pages 163--174
\mathnet{http://mi.mathnet.ru/mzm8587}
\crossref{https://doi.org/10.4213/mzm8587}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2731469}
\zmath{https://zbmath.org/?q=an:05791035}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 2
\pages 155--164
\crossref{https://doi.org/10.1134/S0001434610010232}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949992272}
Linking options:
  • https://www.mathnet.ru/eng/mzm8587
  • https://doi.org/10.4213/mzm8587
  • https://www.mathnet.ru/eng/mzm/v87/i2/p163
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025