Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 90, Issue 2, Pages 285–299
DOI: https://doi.org/10.4213/mzm8713
(Mi mzm8713)
 

This article is cited in 3 scientific papers (total in 3 papers)

Smooth Three-Dimensional Canonical Thresholds

D. A. Stepanov

N. E. Bauman Moscow State Technical University
Full-text PDF (583 kB) Citations (3)
References:
Abstract: If $X$ is an algebraic variety with at most canonical singularities and $S$ is a $\mathbb{Q}$-Cartier hypersurface in $X$, then the canonical threshold of the pair $(X,S)$ is defined as the least upper bound of the reals $c$ for which the pair $(X,cS)$ is canonical. We show that the set of all possible canonical thresholds of the pairs $(X,S)$, where $X$ is smooth and three-dimensional, satisfies the ascending chain condition. We also derive a formula for the canonical threshold of the pair $(\mathbb{C}^3,S)$, where $S$ is a Brieskorn singularity.
Keywords: algebraic variety, canonical singularity, canonical threshold, $\mathbb{Q}$-Cartier hypersurface, Brieskorn singularity, minimal model program, Picard number.
Received: 18.01.2010
Revised: 08.07.2010
English version:
Mathematical Notes, 2011, Volume 90, Issue 2, Pages 265–278
DOI: https://doi.org/10.1134/S0001434611070261
Bibliographic databases:
Document Type: Article
UDC: 512.72
Language: Russian
Citation: D. A. Stepanov, “Smooth Three-Dimensional Canonical Thresholds”, Mat. Zametki, 90:2 (2011), 285–299; Math. Notes, 90:2 (2011), 265–278
Citation in format AMSBIB
\Bibitem{Ste11}
\by D.~A.~Stepanov
\paper Smooth Three-Dimensional Canonical Thresholds
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 2
\pages 285--299
\mathnet{http://mi.mathnet.ru/mzm8713}
\crossref{https://doi.org/10.4213/mzm8713}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2918444}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 2
\pages 265--278
\crossref{https://doi.org/10.1134/S0001434611070261}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294363500026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052056738}
Linking options:
  • https://www.mathnet.ru/eng/mzm8713
  • https://doi.org/10.4213/mzm8713
  • https://www.mathnet.ru/eng/mzm/v90/i2/p285
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025