|
On the Vinogradov Additive Problem
G. I. Arkhipova, V. N. Chubarikovb a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
Abstract:
Let us state the main result of the paper. Suppose that the collection $N_1,\dots,N_n$ is admissible. Then, in the representation
$$
\begin{cases}
p_1+p_2+\dots+p_k=N_1,
\\
\dots\dots\dots\dots\dots\dots\dots\dots
\\
p_1^n+p_2^n+\dots+p_k^n=N_n,
\end{cases}
$$
where the unknowns $p_1,p_2,\dots,p_k$ take prime values under the condition $p_s>n+1$, $s=1,\dots,k$, the number $k$ is of the form
$$
k=k_0+b(n)s,
$$
where $s$ is a nonnegative integer. Further, if $k_0\ge a$, then, in the representation for $k$, we can set $s=0$, but if $k_0\le a-1$, then, for a given $k_0$ there exist admissible collections $(N_1,\dots,N_n)$ that cannot be expressed as $k_0$ summands of the required form, but can be expressed as $k_0+b(n)$ summands.
Keywords:
additive problem of Vinogradov, Hilbert–Kamke problem, Vinogradov system of equations, $p$-solvability, Waring–Goldbach problem, Vinogradov system of congruences.
Received: 29.12.2009
Citation:
G. I. Arkhipov, V. N. Chubarikov, “On the Vinogradov Additive Problem”, Mat. Zametki, 88:3 (2010), 325–339; Math. Notes, 88:3 (2010), 295–307
Linking options:
https://www.mathnet.ru/eng/mzm8807https://doi.org/10.4213/mzm8807 https://www.mathnet.ru/eng/mzm/v88/i3/p325
|
| Statistics & downloads: |
| Abstract page: | 1041 | | Full-text PDF : | 329 | | References: | 148 | | First page: | 74 |
|