Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 1, Pages 89–99
DOI: https://doi.org/10.4213/mzm9
(Mi mzm9)
 

On the Inverses of Brownian and Brownian-Like Matrices

Kh. D. Ikramov, A. A. Chesnokov

M. V. Lomonosov Moscow State University
References:
Abstract: In several papers by F. Valvi, sufficient conditions are given for Brownian and Brownian-like matrices to have Hessenberg inverses. We interpret these conditions from the viewpoint of familiar facts related to matrices of small triangular rank. This allows us to formulate more general assertions on the Hessenberg property of the inverse. Moreover, we explicitly find the structure of the inverse of a Brownian matrix under a certain natural irreducibility condition. This structure is similar to the well-known structure of the inverse of an irreducible tridiagonal matrix. Furthermore, we show that the parameters defining the inverse of an ($n\times n$) Brownian matrix can be calculated in $O(n)$ arithmetic operations.
Received: 19.12.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 1, Pages 83–92
DOI: https://doi.org/10.1023/B:MATN.0000015023.55603.cd
Bibliographic databases:
UDC: 512.64
Language: Russian
Citation: Kh. D. Ikramov, A. A. Chesnokov, “On the Inverses of Brownian and Brownian-Like Matrices”, Mat. Zametki, 75:1 (2004), 89–99; Math. Notes, 75:1 (2004), 83–92
Citation in format AMSBIB
\Bibitem{IkrChe04}
\by Kh.~D.~Ikramov, A.~A.~Chesnokov
\paper On the Inverses of Brownian and Brownian-Like Matrices
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 1
\pages 89--99
\mathnet{http://mi.mathnet.ru/mzm9}
\crossref{https://doi.org/10.4213/mzm9}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2053151}
\zmath{https://zbmath.org/?q=an:1120.15301}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 1
\pages 83--92
\crossref{https://doi.org/10.1023/B:MATN.0000015023.55603.cd}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100008}
Linking options:
  • https://www.mathnet.ru/eng/mzm9
  • https://doi.org/10.4213/mzm9
  • https://www.mathnet.ru/eng/mzm/v75/i1/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025