Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 4, Pages 614–634
DOI: https://doi.org/10.4213/mzm9096
(Mi mzm9096)
 

This article is cited in 9 scientific papers (total in 9 papers)

Squeezed States and Their Applications to Quantum Evolution

A. M. Chebotarev, T. V. Tlyachev, A. A. Radionov

M. V. Lomonosov Moscow State University
Full-text PDF (639 kB) Citations (9)
References:
Abstract: In this paper, we consider quantum multidimensional problems solvable by using the second quantization method. A multidimensional generalization of the Bogolyubov factorization formula, which is an important particular case of the Campbell–Baker–Hausdorff formula, is established. The inner product of multidimensional squeezed states is calculated explicitly; this relationship justifies a general construction of orthonormal systems generated by linear combinations of squeezed states. A correctly defined path integral representation is derived for solutions of the Cauchy problem for the Schrödinger equation describing the dynamics of a charged particle in the superposition of orthogonal constant $(E,H)$-fields and a periodic electric field. We show that the evolution of squeezed states runs over compact one-dimensional matrix-valued orbits of squeezed components of the solution, and the evolution of coherent shifts is a random Markov jump process which depends on the periodic component of the potential.
Keywords: squeezed state, Bogolyubov formula, Campbell–Baker–Hausdorff formula, Schrödinger equation, carbon films in $(E,H)$-fields.
Received: 17.10.2010
Revised: 18.11.2010
English version:
Mathematical Notes, 2011, Volume 89, Issue 4, Pages 577–595
DOI: https://doi.org/10.1134/S0001434611030308
Bibliographic databases:
Document Type: Article
UDC: 517.958:530.145.6
Language: Russian
Citation: A. M. Chebotarev, T. V. Tlyachev, A. A. Radionov, “Squeezed States and Their Applications to Quantum Evolution”, Mat. Zametki, 89:4 (2011), 614–634; Math. Notes, 89:4 (2011), 577–595
Citation in format AMSBIB
\Bibitem{CheTlyRad11}
\by A.~M.~Chebotarev, T.~V.~Tlyachev, A.~A.~Radionov
\paper Squeezed States and Their Applications to Quantum Evolution
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 4
\pages 614--634
\mathnet{http://mi.mathnet.ru/mzm9096}
\crossref{https://doi.org/10.4213/mzm9096}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2856753}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 4
\pages 577--595
\crossref{https://doi.org/10.1134/S0001434611030308}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290038700030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955614572}
Linking options:
  • https://www.mathnet.ru/eng/mzm9096
  • https://doi.org/10.4213/mzm9096
  • https://www.mathnet.ru/eng/mzm/v89/i4/p614
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025