Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find







Matematicheskie Zametki, 2014, Volume 95, Issue 4, Pages 492–506
DOI: https://doi.org/10.4213/mzm9334
(Mi mzm9334)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the Structural Properties of the Weight Space $L_{p(x),\omega}$ for $0< p(x)<1$

R. A. Bandaliev

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
References:
Abstract: The main purpose of this paper is to study the weight space $L_{p(x),\omega}$ for $0< p(x)<\nobreak 1$ as well as the topology of this space. Embeddings between different Lebesgue spaces with variable exponent of summability are established. In particular, it is proved that the set of all linear continuous functionals over $L_{p(x),\omega}$ for $0< p(x)<\nobreak 1$ consists only of the zero functional.
Keywords: weight space $L_{p(x),\omega}$, Lebesgue space with variable exponent of summability, embedding theorem, Lebesgue measurable function, quasinormed space, quasi-Banach space.
Received: 22.03.2012
Revised: 28.01.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 4, Pages 450–462
DOI: https://doi.org/10.1134/S0001434614030171
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: R. A. Bandaliev, “On the Structural Properties of the Weight Space $L_{p(x),\omega}$ for $0< p(x)<1$”, Mat. Zametki, 95:4 (2014), 492–506; Math. Notes, 95:4 (2014), 450–462
Citation in format AMSBIB
\Bibitem{Ban14}
\by R.~A.~Bandaliev
\paper On the Structural Properties of the Weight Space~$L_{p(x),\omega}$ for $0< p(x)<1$
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 4
\pages 492--506
\mathnet{http://mi.mathnet.ru/mzm9334}
\crossref{https://doi.org/10.4213/mzm9334}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3298902}
\elib{https://elibrary.ru/item.asp?id=21826473}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 4
\pages 450--462
\crossref{https://doi.org/10.1134/S0001434614030171}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457300017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899700085}
Linking options:
  • https://www.mathnet.ru/eng/mzm9334
  • https://doi.org/10.4213/mzm9334
  • https://www.mathnet.ru/eng/mzm/v95/i4/p492
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:808
    Full-text PDF :262
    References:131
    First page:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025