|
This article is cited in 12 scientific papers (total in 12 papers)
Boundary Behavior of Orlicz–Sobolev Classes
D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk
Abstract:
It is proved that homeomorphisms of the Orlicz–Sobolev class $W^{1,\varphi}_\rm{loc}$ can be continuously extended to the boundaries of some domains if the function $\varphi$ defining this class satisfies a Carderón-type condition and the outer dilatation $K_f$ of the mapping $f$ satisfies the divergence condition for integrals of special form. In particular, the result holds for homeomorphisms of the Sobolev classes $W^{1,1}_\rm{loc}$ with $K_f\in L^{q}_\rm{loc}$ for $q>n-1$.
Keywords:
Orlicz–Sobolev class, Orlicz space, continuous extension, outer dilatation, homeomorphic extension.
Received: 27.12.2012
Citation:
D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “Boundary Behavior of Orlicz–Sobolev Classes”, Mat. Zametki, 95:4 (2014), 564–576; Math. Notes, 95:4 (2014), 509–519
Linking options:
https://www.mathnet.ru/eng/mzm9355https://doi.org/10.4213/mzm9355 https://www.mathnet.ru/eng/mzm/v95/i4/p564
|
| Statistics & downloads: |
| Abstract page: | 814 | | Full-text PDF : | 259 | | References: | 123 | | First page: | 43 |
|