|
|
Matematicheskie Zametki, 1969, Volume 5, Issue 4, Pages 457–460
(Mi mzm9479)
|
|
|
|
On the rank of a spectral function
M. S. Brodskii K. D. Ushinskii Pedagogical Institute, Odessa
Abstract:
Let $P(x)$, $0\leqslant x\leqslant1$, be an absolutely continuous spectral function in the separable Hilbert spaces $\mathfrak{S}$. If the vectors $h_j$, $j=1,2,\dots,s$, $s\leqslant\infty$ are such that the set $P(x)h_j$ is complete in $\mathfrak{S}$, then the rank of the function $P(x)$ equals the general rank of the matrix-function $d/dx||P(x)h_i,h_j||^s_1$.
Received: 07.08.1967
Citation:
M. S. Brodskii, “On the rank of a spectral function”, Mat. Zametki, 5:4 (1969), 457–460; Math. Notes, 5:4 (1969), 275–276
Linking options:
https://www.mathnet.ru/eng/mzm9479 https://www.mathnet.ru/eng/mzm/v5/i4/p457
|
|