Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1969, Volume 5, Issue 4, Pages 457–460 (Mi mzm9479)  

On the rank of a spectral function

M. S. Brodskii

K. D. Ushinskii Pedagogical Institute, Odessa
Abstract: Let $P(x)$, $0\leqslant x\leqslant1$, be an absolutely continuous spectral function in the separable Hilbert spaces $\mathfrak{S}$. If the vectors $h_j$, $j=1,2,\dots,s$, $s\leqslant\infty$ are such that the set $P(x)h_j$ is complete in $\mathfrak{S}$, then the rank of the function $P(x)$ equals the general rank of the matrix-function $d/dx||P(x)h_i,h_j||^s_1$.
Received: 07.08.1967
English version:
Mathematical Notes, 1969, Volume 5, Issue 4, Pages 275–276
DOI: https://doi.org/10.1007/BF01410797
Bibliographic databases:
Document Type: Article
UDC: 513.88
Language: Russian
Citation: M. S. Brodskii, “On the rank of a spectral function”, Mat. Zametki, 5:4 (1969), 457–460; Math. Notes, 5:4 (1969), 275–276
Citation in format AMSBIB
\Bibitem{Bro69}
\by M.~S.~Brodskii
\paper On the rank of a spectral function
\jour Mat. Zametki
\yr 1969
\vol 5
\issue 4
\pages 457--460
\mathnet{http://mi.mathnet.ru/mzm9479}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=247506}
\zmath{https://zbmath.org/?q=an:0181.40902|0177.17302}
\transl
\jour Math. Notes
\yr 1969
\vol 5
\issue 4
\pages 275--276
\crossref{https://doi.org/10.1007/BF01410797}
Linking options:
  • https://www.mathnet.ru/eng/mzm9479
  • https://www.mathnet.ru/eng/mzm/v5/i4/p457
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025