|
|
Matematicheskie Zametki, 1970, Volume 7, Issue 3, Pages 289–293
(Mi mzm9507)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Distribution of poles of rational functions of best approximation
G. A. Volkov M. V. Lomonosov Moscow State University
Abstract:
This article describes the construction of an entire function $E(z)$ such that for any sequence $\{\overset{*}{r}_n(z)\}$ of rational functions of best approximation to $E(z)$ on the unit disc $K$, the corresponding set of poles $\{\overset{*}{\alpha}_{nk}\}$ is everywhere dense in the complement of $K$.
Received: 20.03.1969
Citation:
G. A. Volkov, “Distribution of poles of rational functions of best approximation”, Mat. Zametki, 7:3 (1970), 289–293; Math. Notes, 7:3 (1970), 176–178
Linking options:
https://www.mathnet.ru/eng/mzm9507 https://www.mathnet.ru/eng/mzm/v7/i3/p289
|
|