|
|
Matematicheskie Zametki, 1970, Volume 7, Issue 5, Pages 569–580
(Mi mzm9541)
|
|
|
|
This article is cited in 5 scientific papers (total in 6 papers)
An estimate of an incomplete linear form in several algebraic numbers
N. I. Fel'dman M. V. Lomonosov Moscow State University
Abstract:
Let $\mu>m-1$, let $\nu$ be a rational number, and let $\omega_k=b_k^\nu$, where $b_k\ne0$
are distinct numbers of an imaginary quadratic field $K$, which satisfy some additional conditions. Then
\begin{gather*}
|x_1\omega_1+\dots+x_m\omega_m|>X^{-\mu},\\
X=\max_{1\leqslant k\leqslant m}|x_k|\geqslant X_0>0,\\
\end{gather*}
where $x_1,\dots,x_m$ are integers of the field $K$, and $X_0$ is an effective constant.
Received: 12.05.1969
Citation:
N. I. Fel'dman, “An estimate of an incomplete linear form in several algebraic numbers”, Mat. Zametki, 7:5 (1970), 569–580; Math. Notes, 7:5 (1970), 343–349
Linking options:
https://www.mathnet.ru/eng/mzm9541 https://www.mathnet.ru/eng/mzm/v7/i5/p569
|
|