|
This article is cited in 4 scientific papers (total in 5 papers)
On the Cantor–Lebesgue theorem for double trigonometric series
S. B. Stechkin V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR
Abstract:
Suppose that on some measurable set $E\subset\mathbf{T}^2$, $\mu(E)>2/3$,
$$
A_\nu(x)=\sum_{n_1^2+n_2^2=\nu}c_{n_1,n_2}e^{2\pi i(n_1x_1+n_2x_2)}\to0\qquad(\nu\to\infty).
$$
Then
$$
\sum_{n_1^2+n_2^2=\nu}|c_{n_1,n_2}|^2\to0\qquad(\nu\to\infty).
$$
Received: 23.02.1972
Citation:
S. B. Stechkin, “On the Cantor–Lebesgue theorem for double trigonometric series”, Mat. Zametki, 12:1 (1972), 13–17; Math. Notes, 12:1 (1972), 441–443
Linking options:
https://www.mathnet.ru/eng/mzm9841 https://www.mathnet.ru/eng/mzm/v12/i1/p13
|
| Statistics & downloads: |
| Abstract page: | 308 | | Full-text PDF : | 118 | | References: | 4 | | First page: | 1 |
|