|
|
Nanosystems: Physics, Chemistry, Mathematics, 2013, Volume 4, Issue 4, Pages 446–466
(Mi nano781)
|
|
|
|
Diffusion and Laplacian transport for absorbing domains
Ibrahim Baydouna, Valentin A. Zagrebnovb a École Centrale Paris, 2 Avenue Sully Prudhomme, 92290 Chtenay-Malabry, France
b Département de Mathématiques, Université d’Aix-Marseille Laboratoire d'Analyse, Topologie et Probabilités (UMR 7353)CMI - Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France
Abstract:
We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results concern a formal solution of the geometrically inverse problem for localisation and reconstruction of the form of absorbing domains. Here, we restrict our analysis to the one- and two-dimensional cases. We show that the last case can be studied by the conformal mapping technique. To illustrate this, we scrutinize the constant boundary conditions and analyze a numeric example.
Keywords:
Laplacian transport, dirichlet-to-Neumann operators, conformal mapping.
Citation:
Ibrahim Baydoun, Valentin A. Zagrebnov, “Diffusion and Laplacian transport for absorbing domains”, Nanosystems: Physics, Chemistry, Mathematics, 4:4 (2013), 446–466
Linking options:
https://www.mathnet.ru/eng/nano781 https://www.mathnet.ru/eng/nano/v4/i4/p446
|
|