Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2013, Volume 4, Issue 4, Pages 474–483 (Mi nano783)  

On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains

Konstantin Pankrashkin

Laboratoire de mathématiques – UMR 8628, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France
Abstract: Let $\Omega\subset\mathbb{R}^2$ be a domain having a compact boundary $\Sigma$ which is Lipschitz and piecewise $C^4$ smooth, and let $\nu$ denote the inward unit normal vector on $\Sigma$. We study the principal eigenvalue $E(\beta)$ of the Laplacian in $\Omega$ with the Robin boundary conditions $\partial f/\partial\nu+\beta f=0$ on $\Sigma$, where $\beta$ is a positive number. Assuming that $\Sigma$ has no convex corners, we show the estimate $E(\beta)=-\beta^2-\gamma_{\max}\beta+O(\beta^{2/3})$ as $\beta\to+\infty$, where $\gamma_{\max}$ is the maximal curvature of the boundary.
Keywords: eigenvalue, Laplacian, Robin boundary condition, curvature, asymptotics.
Bibliographic databases:
Document Type: Article
PACS: 41.20.Cv, 02.30.Jr, 02.30.Tb
Language: English
Citation: Konstantin Pankrashkin, “On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains”, Nanosystems: Physics, Chemistry, Mathematics, 4:4 (2013), 474–483
Citation in format AMSBIB
\Bibitem{Pan13}
\by Konstantin~Pankrashkin
\paper On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2013
\vol 4
\issue 4
\pages 474--483
\mathnet{http://mi.mathnet.ru/nano783}
\elib{https://elibrary.ru/item.asp?id=20172517}
Linking options:
  • https://www.mathnet.ru/eng/nano783
  • https://www.mathnet.ru/eng/nano/v4/i4/p474
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :63
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025