|
|
Nanosystems: Physics, Chemistry, Mathematics, 2013, Volume 4, Issue 4, Pages 474–483
(Mi nano783)
|
|
|
|
On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains
Konstantin Pankrashkin Laboratoire de mathématiques – UMR 8628, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France
Abstract:
Let $\Omega\subset\mathbb{R}^2$ be a domain having a compact boundary $\Sigma$ which is Lipschitz and piecewise $C^4$ smooth, and let $\nu$ denote the inward unit normal vector on $\Sigma$. We study the principal eigenvalue $E(\beta)$ of the Laplacian in $\Omega$ with the Robin boundary conditions $\partial f/\partial\nu+\beta f=0$ on $\Sigma$, where $\beta$ is a positive number. Assuming that $\Sigma$ has no convex corners, we show the estimate $E(\beta)=-\beta^2-\gamma_{\max}\beta+O(\beta^{2/3})$ as $\beta\to+\infty$, where $\gamma_{\max}$ is the maximal curvature of the boundary.
Keywords:
eigenvalue, Laplacian, Robin boundary condition, curvature, asymptotics.
Citation:
Konstantin Pankrashkin, “On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains”, Nanosystems: Physics, Chemistry, Mathematics, 4:4 (2013), 474–483
Linking options:
https://www.mathnet.ru/eng/nano783 https://www.mathnet.ru/eng/nano/v4/i4/p474
|
| Statistics & downloads: |
| Abstract page: | 130 | | Full-text PDF : | 63 | | References: | 2 |
|