Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2014, Volume 5, Issue 5, Pages 619–625 (Mi nano892)  

On the number of eigenvalues of the family of operator matrices

M. I. Muminova, T. H. Rasulovb

a Universiti Teknologi Malaysia, Faculty of Science, Departmentof Mathematical Sciences, 81310 UTM Johor Bahru, Malaysia
b Bukhara State University, Faculty of Physics and Mathematics, 11 M. Ikbol str., Bukhara, 200100, Uzbekistan
Abstract: We consider the family of operator matrices $H(K)$, $K\in\mathbb{T}^3:=(-\pi,\pi]^3$ acting in the direct sum of zero-, one- and two-particle subspaces of the bosonic Fock space. We find a finite set $\Lambda\subset\mathbb{T}^3$ to establish the existence of infinitely many eigenvalues of $H(K)$ for all $K\in\Lambda$ when the associated Friedrichs model has a zero energy resonance. It is found that for every $K\in\Lambda$ the number $N(K,z)$ of eigenvalues of $H(K)$ lying on the left of $z$, $z<0$, satisfies the asymptotic relation $\lim_{z\to -0}N(k,z)|\log|z||^{-1}=\mathcal{U}_0$ with $0<\mathcal{U}_0<\infty$, independently on the cardinality of $\Lambda$. Moreover, we show that for any $K\in\Lambda$ the operator $H(K)$ has a finite number of negative eigenvalues if the associated Friedrichs model has a zero eigenvalue or a zero is the regular type point for positive definite Friedrichs model.
Keywords: operator matrix, bosonic Fock space, annihilation and creation operators, Friedrichs model, essential spectrum, asymptotics.
Received: 03.06.2014
Bibliographic databases:
Document Type: Article
PACS: 02.30.Tb
Language: English
Citation: M. I. Muminov, T. H. Rasulov, “On the number of eigenvalues of the family of operator matrices”, Nanosystems: Physics, Chemistry, Mathematics, 5:5 (2014), 619–625
Citation in format AMSBIB
\Bibitem{MumRas14}
\by M.~I.~Muminov, T.~H.~Rasulov
\paper On the number of eigenvalues of the family of operator matrices
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2014
\vol 5
\issue 5
\pages 619--625
\mathnet{http://mi.mathnet.ru/nano892}
\elib{https://elibrary.ru/item.asp?id=22415657}
Linking options:
  • https://www.mathnet.ru/eng/nano892
  • https://www.mathnet.ru/eng/nano/v5/i5/p619
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :55
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025