|
The Lorentzian Problem on 2-Dimensional de Sitter Space
V. S. Petukhov, Yu. L. Sachkov Ailamazyan Program Systems Institute, Russian Academy of Sciences,
Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia
Abstract:
This paper considers the Lorentzian optimal control problem on two-dimensional de Sitter
space. Normal and abnormal optimal trajectories are studied using the Pontryagin maximum
principle. Attainable sets, spheres and distance in the Lorentzian metric are computed. Killing
vector fields and isometries are described.
Keywords:
Lorentzian geometry, de Sitter space, optimal control
Received: 25.12.2023 Accepted: 30.07.2024
Citation:
V. S. Petukhov, Yu. L. Sachkov, “The Lorentzian Problem on 2-Dimensional de Sitter Space”, Rus. J. Nonlin. Dyn., 20:4 (2024), 619–633
Linking options:
https://www.mathnet.ru/eng/nd914 https://www.mathnet.ru/eng/nd/v20/i4/p619
|
| Statistics & downloads: |
| Abstract page: | 106 | | Full-text PDF : | 37 | | References: | 33 |
|