Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 1999, Issue 6, Pages 46–56 (Mi pa103)  

О вполне регулярных пространствах, для которых $eX=\beta X$

K. V. Matyushichev

Petrozavodsk State University, Faculty of Mathematics
Abstract: Let $eX$ denote the largest semiregular $e$-compactification of an $e$-compactifiable space $X$. In [1] K. P. Hart and J. Vermeer presented an example of a completely regular space $X$ for which $eX\ne \beta X$, thus distinguishing a new class of completely regular spaces having the property $eX= \beta X$. This paper shows that this property is not preserved by sums, subspaces and Cartesian products. A few remarks are made about $eX$ itself. Finally, we introduce countably regular spaces that are presumably intermediate between completely regular and regular spaces. A space $X$ is called countably regular (CR) if it has a countably regular (CR) base, i. e., a base $\beta$ such that for every $U\in; \beta$ there exists a sequence $\{U_{n}\}_{n=1}^{\infty}$ in $\beta$ such that $U=\cup_{n=1}^{\infty} U_{n}$ and $[U_{n}]\subset U$ for each $n\in \mathbb{N}$. Most widely known regular non-completely regular spaces are not CR. Every time there is machinery killing complete regularity it also kills CR. Two questions arise. Does there exist a CR space that is not completely regular? Does countable regularity imply $e$-compactifiability as is the case with complete regularity?
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: K. V. Matyushichev, “О вполне регулярных пространствах, для которых $eX=\beta X$”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1999, no. 6, 46–56
Citation in format AMSBIB
\Bibitem{Mat99}
\by K.~V.~Matyushichev
\paper О вполне регулярных пространствах, для которых $eX=\beta X$
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 1999
\issue 6
\pages 46--56
\mathnet{http://mi.mathnet.ru/pa103}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1758462}
\zmath{https://zbmath.org/?q=an:0974.54014}
Linking options:
  • https://www.mathnet.ru/eng/pa103
  • https://www.mathnet.ru/eng/pa/y1999/i6/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :54
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025