Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 1998, Issue 5, Pages 140–146 (Mi pa117)  

Linear problems in the space of polynomials of degree at most 3

J. Sokół, W. Szumny

Rzeszów University of Technology
Abstract: Denote by $P_{n}, n\in N$ the linear space of real polynomials $p$ of degree at most $n$. There are various ways in which we can introduce norm in $P_{n}$, here the problem is investigated when $||p||=max\{|p(x)|:x\in [-1;1]\}$. Let $B_{n}=\{p\in P_n:||p||\le 1\}$ be the unit ball and let $EB_{n}$ be the set of the extreme points of $B_{n}$, i.e. such points $p\in B_{n}$ that $B_{n}\setminus \{p\}$ is convex. The sets $EB_{0}, EB_{1}$ and $EB_{2}$ are known and it turns out that also $EB_{3}$ has a particularly simple form. In this paper we determine $EB_{3}$ and give some conclusions and applications of the main results. Moreover, several examples are included. The coefficient region for the polynomials of degree exceeding 3 seems very complicated.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: English
Citation: J. Sokół, W. Szumny, “Linear problems in the space of polynomials of degree at most 3”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1998, no. 5, 140–146
Citation in format AMSBIB
\Bibitem{SokSzu98}
\by J.~Sok{\'o}\l , W.~Szumny
\paper Linear problems in the space of polynomials of degree at most 3
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 1998
\issue 5
\pages 140--146
\mathnet{http://mi.mathnet.ru/pa117}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1715081}
\zmath{https://zbmath.org/?q=an:0965.26004}
Linking options:
  • https://www.mathnet.ru/eng/pa117
  • https://www.mathnet.ru/eng/pa/y1998/i5/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025