|
$\mathcal{I}^\mathcal{K}$-sequential and $\mathcal{I}^\mathcal{K}$-Fréchet-Urysohn spaces
S. Roya, M. Singhab a Sima Roy Department of Mathematics, Raja Rammohun Roy Mahavidyalaya, Hooghly, 712406, West Bengal, India
b Department of Mathematics, University of North Bengal, Darjeeling, 734013, West Bengal, India
Abstract:
Notions of $\mathcal{I}^\mathcal{K}$-Fréchet-Urysohn and $\mathcal{I}^\mathcal{K}$-sequential spaces are studied by letting ideals $\mathcal{I}$, $\mathcal{K}$ of subsets of natural numbers to play measurable role in the well-established concepts of Fréchet-Urysohn and sequential spaces. Relation among those spaces in new and old setting have been established by introducing $\mathcal{I}^\mathcal{K}$-quotient maps and $\mathcal{I}^\mathcal{K}$-covering maps.
Keywords:
$\mathcal{I}^\mathcal{K}$-quotient map, $\mathcal{I}^\mathcal{K}$-covering map, $\mathcal{I}^\mathcal{K}$-sequential space, $\mathcal{I}^\mathcal{K}$-Fréchet-Urysohn space.
Received: 28.11.2024 Revised: 23.04.2025 Accepted: 30.04.2025
Citation:
S. Roy, M. Singha, “$\mathcal{I}^\mathcal{K}$-sequential and $\mathcal{I}^\mathcal{K}$-Fréchet-Urysohn spaces”, Probl. Anal. Issues Anal., 14(32):2 (2025), 103–119
Linking options:
https://www.mathnet.ru/eng/pa426 https://www.mathnet.ru/eng/pa/v32/i2/p103
|
| Statistics & downloads: |
| Abstract page: | 58 | | Full-text PDF : | 117 | | References: | 14 |
|