Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2005, Issue 12, Pages 51–70 (Mi pa62)  

Koebe domains for the class of typically real odd functions

L. Koczan, P. Zaprawa

Lublin University of Technology, Department of Applied Mathematics, Lublin
Abstract: In this paper we discuss the generalized Koebe domains for the class $T ^{(2)}$ and the set $D\subset \Delta=\{z\in \mathbb{C}:|z|< 1\}$, i.e. the sets of the form $\cap_{f\in TM} f(D)$. The main idea we work with is the method of the envelope. We determine the Koebe domains for $H=\{z\in \Delta : |z^{2}+1|>2|z|\}$ and for special sets $\Omega_{\alpha}, \alpha \le \frac{4}{3}$. It appears that the set $\Omega_{\frac{4}{3}}$ is the largest subset of $\Delta$ for which one can compute the Koebe domain with the use of this method. It means that the set $K_{T^{(2)}}(\Omega_{\frac{4}{3}})\cup K_T (\Delta)$ is the largest subset of the still unknown set $K_{T^{(2)}}(\Delta)$ which we are able to derive.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: English
Citation: L. Koczan, P. Zaprawa, “Koebe domains for the class of typically real odd functions”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2005, no. 12, 51–70
Citation in format AMSBIB
\Bibitem{KocZap05}
\by L.~Koczan, P.~Zaprawa
\paper Koebe domains for the class of typically real odd functions
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 2005
\issue 12
\pages 51--70
\mathnet{http://mi.mathnet.ru/pa62}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2244863}
\zmath{https://zbmath.org/?q=an:1130.30023}
Linking options:
  • https://www.mathnet.ru/eng/pa62
  • https://www.mathnet.ru/eng/pa/y2005/i12/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025