Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2003, Issue 10, Pages 41–58 (Mi pa75)  

Условные и взаимные мультифрактальные спектры. Определение и основные свойства.

N. Yu. Svetova

Petrozavodsk State University, Faculty of Mathematics
Abstract: This paper introduces a formalism for the multifractal analysis of one probability measure with respect to another. The conditional and the mutual multifractal spectra are considered, which give the better understanding of influence of local geometry of fractal measures against each other.
Bibliographic databases:
Document Type: Article
UDC: 511, 514.8 ,530.1
Language: Russian
Citation: N. Yu. Svetova, “Условные и взаимные мультифрактальные спектры. Определение и основные свойства.”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2003, no. 10, 41–58
Citation in format AMSBIB
\Bibitem{Sve03}
\by N.~Yu.~Svetova
\paper Условные и взаимные мультифрактальные спектры. Определение и основные свойства.
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 2003
\issue 10
\pages 41--58
\mathnet{http://mi.mathnet.ru/pa75}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2076903}
\zmath{https://zbmath.org/?q=an:1214.28005}
Linking options:
  • https://www.mathnet.ru/eng/pa75
  • https://www.mathnet.ru/eng/pa/y2003/i10/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025