|
|
Trudy Petrozavodskogo Gosudarstvennogo Universiteta. Seriya Matematika, 2000, Issue 7, Pages 15–29
(Mi pa89)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
О степенных спектрах и композициях финитно строго эпиморфных функторов
A. V. Ivanov Petrozavodsk State University, Faculty of Mathematics
Abstract:
The degree spectrum $sp(F)$ of functor $F$ is a set of degrees of points in spaces of the form $F(X)$. We prove that for any subset $K\subset N$ there is strictly epimorphic functor $F$ satisfying certain normality conditions with $sp(F)=K$. We also prove that for strictly epimorphic functor $F$ the composition $F\circ G$ is strictly epimorphic if $sp(F)=N$ and $G$ preserve finite spaces. The composition $G\circ F$ is also strictly epimorphic for any $G$ if $F$ has extension property for finite sections.
Citation:
A. V. Ivanov, “О степенных спектрах и композициях финитно строго эпиморфных функторов”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2000, no. 7, 15–29
Linking options:
https://www.mathnet.ru/eng/pa89 https://www.mathnet.ru/eng/pa/y2000/i7/p15
|
|