|
This article is cited in 2 scientific papers (total in 2 papers)
Applied Graph Theory
A set of families of analytically described triple loop networks defined by a parameter
E. A. Monakhova Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia
Abstract:
A set of families of undirected triple loop networks of the form $C(N(d,p); 1, s_2(d,p),$ $ s_3(d,p))$ with the given diameter $d>1$ and a parameter $p=1, 2, \ldots, d-1$ is obtained. For each such family, the order $N$ of every graph in the family and its generators $s_2$ and $s_3$ are defined by a cubical polynomial function of the diameter. The found set includes circulant graphs of degree 6 with the largest known orders for any diameters $d\equiv 0 \pmod 3$ and $d\equiv 2 \pmod 3$. Examples of constructing new families of triple loop networks based on the definition of functions $p=p(d)$ are presented.
Keywords:
undirected triple loop networks, circulant graphs of degree $6$ with given diameter, families of circulant graphs.
Citation:
E. A. Monakhova, “A set of families of analytically described triple loop networks defined by a parameter”, Prikl. Diskr. Mat., 2020, no. 49, 108–119
Linking options:
https://www.mathnet.ru/eng/pdm717 https://www.mathnet.ru/eng/pdm/y2020/i3/p108
|
| Statistics & downloads: |
| Abstract page: | 206 | | Full-text PDF : | 77 | | References: | 53 |
|