|
Prikladnaya Diskretnaya Matematika, 2021, Number 54, Pages 99–108 DOI: https://doi.org/10.17223/20710410/54/5
(Mi pdm755)
|
|
|
|
Applied Graph Theory
The palette index of Sierpiński triangle graphs and Sierpiński graphs
A. Ghazaryan Yerevan State University, Yerevan, Armenia
DOI:
https://doi.org/10.17223/20710410/54/5
Abstract:
The palette of a vertex $v$ of a graph $G$ in a proper edge coloring is the set of colors assigned to the edges which are incident to $v$. The palette index of $G$ is the minimum number of palettes occurring among all proper edge colorings of $G$. In this paper, we consider the palette index of Sierpiński graphs $S_p^n$ and Sierpiński triangle graphs $\widehat{S}_3^n$. In particular, we determine the exact value of the palette index of Sierpiński triangle graphs. We also determine the palette index of Sierpiński graphs $S_p^n$ where $p$ is even, $p=3$, or $n=2$ and $p=4l+3$.
Keywords:
palette index, Sierpiński triangle graph, Sierpiński graph.
Citation:
A. Ghazaryan, “The palette index of Sierpiński triangle graphs and Sierpiński graphs”, Prikl. Diskr. Mat., 2021, no. 54, 99–108
Linking options:
https://www.mathnet.ru/eng/pdm755 https://www.mathnet.ru/eng/pdm/y2021/i4/p99
|
| Statistics & downloads: |
| Abstract page: | 189 | | Full-text PDF : | 185 | | References: | 49 |
|