Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2021, Number 54, Pages 99–108
DOI: https://doi.org/10.17223/20710410/54/5
(Mi pdm755)
 

Applied Graph Theory

The palette index of Sierpiński triangle graphs and Sierpiński graphs

A. Ghazaryan

Yerevan State University, Yerevan, Armenia
References:
DOI: https://doi.org/10.17223/20710410/54/5
Abstract: The palette of a vertex $v$ of a graph $G$ in a proper edge coloring is the set of colors assigned to the edges which are incident to $v$. The palette index of $G$ is the minimum number of palettes occurring among all proper edge colorings of $G$. In this paper, we consider the palette index of Sierpiński graphs $S_p^n$ and Sierpiński triangle graphs $\widehat{S}_3^n$. In particular, we determine the exact value of the palette index of Sierpiński triangle graphs. We also determine the palette index of Sierpiński graphs $S_p^n$ where $p$ is even, $p=3$, or $n=2$ and $p=4l+3$.
Keywords: palette index, Sierpiński triangle graph, Sierpiński graph.
Bibliographic databases:
Document Type: Article
UDC: 519.174.7
Language: English
Citation: A. Ghazaryan, “The palette index of Sierpiński triangle graphs and Sierpiński graphs”, Prikl. Diskr. Mat., 2021, no. 54, 99–108
Citation in format AMSBIB
\Bibitem{Gha21}
\by A.~Ghazaryan
\paper The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs
\jour Prikl. Diskr. Mat.
\yr 2021
\issue 54
\pages 99--108
\mathnet{http://mi.mathnet.ru/pdm755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000733675400005}
Linking options:
  • https://www.mathnet.ru/eng/pdm755
  • https://www.mathnet.ru/eng/pdm/y2021/i4/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :185
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025