Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2024, Number 66, Pages 78–85
DOI: https://doi.org/10.17223/20710410/66/7
(Mi pdm857)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Automata Theory

On the properties of a finite-state generator

A. O. Bakhareva, R. O. Zapanova, S. E. Zinchenkoa, I. A. Pankratovab, E. S. Prudnikovb

a Novosibirsk State University, Novosibirsk, Russia
b Tomsk State University, Tomsk, Russia
Full-text PDF (623 kB) Citations (1)
References:
Abstract: The periodic properties of a two-stage finite-state generator $G=A_1\cdot A_2$ are studied, where $A_1=(\mathbb{F}_2^n,\mathbb{F}_2, g_1, f_1)$ (it is autonomous), $A_2 = (\mathbb{F}_2,\mathbb{F}_2^m,\mathbb{F}_2,g_2,f_2)$, $n,m\geq 1$. Some necessary conditions for such a generator with the maximum period of $2^{n+m}$ have been formulated, namely: 1) the output sequence of $A_1$ is purely periodic and the period length is $2^n$; 2) the substitution $G_u$ transforming any initial state $y(1)$ of the automaton $A_2$ into the state $y(2^n+1)$ is a full-cycle substitution; 3) the function $f_1$ has an odd weight; 4) the substitutions $g(0,\cdot)$ and $g(1,\cdot)$ have different parities. Some sufficient conditions have been also formulated, for example, in addition to conditions 1–4, the function $g_2(u,y)$ must be injective in $u$ and the weight of the function $f_2$ must be odd. Two methods for constructing a generator having maximum period have been proposed. It has been proved that, for any binary sequence whose period is a power of two, there exists a generator that produces it.
Keywords: finite state machine, cryptographic generator, cryptoautomaton, sequence period.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-282
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. O. Bakharev, R. O. Zapanov, S. E. Zinchenko, I. A. Pankratova, E. S. Prudnikov, “On the properties of a finite-state generator”, Prikl. Diskr. Mat., 2024, no. 66, 78–85
Citation in format AMSBIB
\Bibitem{BakZapZin24}
\by A.~O.~Bakharev, R.~O.~Zapanov, S.~E.~Zinchenko, I.~A.~Pankratova, E.~S.~Prudnikov
\paper On the properties of a finite-state generator
\jour Prikl. Diskr. Mat.
\yr 2024
\issue 66
\pages 78--85
\mathnet{http://mi.mathnet.ru/pdm857}
\crossref{https://doi.org/10.17223/20710410/66/7}
Linking options:
  • https://www.mathnet.ru/eng/pdm857
  • https://www.mathnet.ru/eng/pdm/y2024/i4/p78
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025