Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2025, Number 68, Pages 56–70
DOI: https://doi.org/10.17223/20710410/68/4
(Mi pdm872)
 

Applied Coding Theory

A non-asymptotic estimate of the probability that a Shur — Hadamard square of long random linear code has a maximum dimension

I. V. Chizhovabc

a Lomonosov Moscow State University, Moscow, Russia
b Federal Research Center “Computer Science and Control” of the RAS, Moscow, Russia
c Joint Stock “Research and production company Kryptonite”, Moscow, Russia
References:
DOI: https://doi.org/10.17223/20710410/68/4
Abstract: Let $ \mathbb{F}_q $ be a finite field of $ q $ elements. Let $ \mathcal{V}_n(q) $ denote the vector space of length $ n $ over $ \mathbb{F}_q $. Define a linear $ [n,k]_q $-code $ \mathcal{C} $ as any linear subspace of dimension $ k $ of the space $ \mathcal{V}_n(q) $. This paper focuses on a special operation defined on the set of linear codes of the same length: the Schur — Hadamard product, also known as the Schur product or Hadamard product. The Schur — Hadamard product of two vectors $ x = (x_1, \ldots, x_n) \in \mathcal{V}_n(q) $ and $ y = (y_1, \ldots, y_n) \in \mathcal{V}_n(q) $ is defined as the vector $ x \circ y = (x_1 \cdot y_1, \ldots, x_n \cdot y_n) \in \mathcal{V}_n(q), $ where $ \cdot $ is the field $ \mathbb{F}_q $ multiplication. Define the Schur — Hadamard square $ \mathcal{C}^{\circ 2} $ of $ [n]_q $-code $ \mathcal{C} $ as the linear span of the set of vectors $ \{ c \circ b : c, b \in \mathcal{C} \} $. It is known that for any $ [n,k]_q $-code $ \mathcal{C} $ the inequality $ \dim \mathcal{C}^{\circ 2} \le \min\left( {k(k+1)}/{2}, n \right) $ holds. For a random linear code, the probability that its Schur — Hadamard square has the maximum possible dimension tends to 1 as $ n, k \to \infty $. This fact is used in the analysis of code-based cryptosystems. However, in practice researchers deal with fixed values of $ k $ and $ n $. Therefore, the non-asymptotic estimation of the probability that the Schur — Hadamard square of a random $ [n,k]_q $-code has the maximum possible dimension is of interest. In the case $ n < {k(k+1)}/{2} $ such an estimate was obtained earlier. We provide a non-asymptotic estimate for the case $ n > {k(k+1)}/{2} $. Two theorems are proven: the first gives an estimate for very long codes, while the second applies to relatively short codes. Let $ k, n \in \mathbb{N} $ be such that $ k \ge 5 $ and $ n > {k(k+1)}/{2} $. Then the following inequality holds:
$$ \mathrm{Pr}\,\left[ \dim \mathcal{C}^{\circ 2} = {k(k+1)}/{2} \right] > 1 - q^{{k(k+1)}/{2} + \log_q 2 - (2 - \log_q (2q-1)) n}. $$
If $ k \ge 6 $ and $ n < (k^2 - 4k)/{2(\log_q (2q-1)-1)} $, then
$$ \mathrm{Pr}\,\left[ \dim \mathcal{C}^{\circ 2} = {k(k+1)}/{2} \right] > 1 - q^{{k(k+1)}/{2} + \log_q 2 - \left( 1 - \log_q \left( 1 + (q-1)q^{-\delta_q (n,k) k} \right) \right) n}, $$
where $ \delta_q (n,k) = \dfrac{1}{2} + \dfrac{1}{2k} - \dfrac{1}{2k} \sqrt{2k + 1 + 2(\log_q (2q-1) - 1) n}. $ Finally, examples of estimates are given for different values of $ n $, $ k $ and $ q $.
Keywords: Shur product of linear codes, Hadamard product of linear codes, random codes, Shur square of linear code, Hadamard square of linear code, McEliece public key cryptosystem.
Document Type: Article
UDC: 519.725
Language: Russian
Citation: I. V. Chizhov, “A non-asymptotic estimate of the probability that a Shur — Hadamard square of long random linear code has a maximum dimension”, Prikl. Diskr. Mat., 2025, no. 68, 56–70
Citation in format AMSBIB
\Bibitem{Chi25}
\by I.~V.~Chizhov
\paper A non-asymptotic estimate of the probability that a~Shur~--- Hadamard square of long random linear code has a maximum dimension
\jour Prikl. Diskr. Mat.
\yr 2025
\issue 68
\pages 56--70
\mathnet{http://mi.mathnet.ru/pdm872}
Linking options:
  • https://www.mathnet.ru/eng/pdm872
  • https://www.mathnet.ru/eng/pdm/y2025/i2/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :32
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025