Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2016, Issue 9, Pages 103–105
DOI: https://doi.org/10.17223/2226308X/9/40
(Mi pdma255)
 

Applied Theory of Automata and Graphs

On the number of optimal $1$-hamiltonian graphs with the number of vertices up to $26$ and $28$

M. B. Abrosimov, S. A. Suhov

Saratov State University, Saratov
References:
Abstract: A graph is called $1$-vertex-hamiltonian ($1$-edge-hamiltonian) one, if it becomes Hamiltonian after deleting any its vertex (edge). $1$-vertex-hamiltonian ($1$-edge-hamilton) graph is optimal if it has the minimum number of edges among all $1$-vertex-hamiltonian ($1$-edge-hamiltonian) graphs with the same number of vertices. In the paper, the previous data on the number of optimal $1$-vertex- and $1$-edge-hamiltonian graphs with the number of vertices up to $26$ are verified, and new data for $28$-vertex graphs are given.
Keywords: optimal $1$-hamiltonian graph, minimal $1$-extension of cycle, fault-tolerance.
Document Type: Article
UDC: 519.17
Language: Russian
Citation: M. B. Abrosimov, S. A. Suhov, “On the number of optimal $1$-hamiltonian graphs with the number of vertices up to $26$ and $28$”, Prikl. Diskr. Mat. Suppl., 2016, no. 9, 103–105
Citation in format AMSBIB
\Bibitem{AbrSuk16}
\by M.~B.~Abrosimov, S.~A.~Suhov
\paper On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
\jour Prikl. Diskr. Mat. Suppl.
\yr 2016
\issue 9
\pages 103--105
\mathnet{http://mi.mathnet.ru/pdma255}
\crossref{https://doi.org/10.17223/2226308X/9/40}
Linking options:
  • https://www.mathnet.ru/eng/pdma255
  • https://www.mathnet.ru/eng/pdma/y2016/i9/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025