Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 60–62
DOI: https://doi.org/10.17223/2226308X/10/25
(Mi pdma311)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical Methods of Cryptography

On primitivity of some sets of shift registers mixing digraphs

Y. E. Avezova

National Engineering Physics Institute "MEPhI", Moscow
Full-text PDF (554 kB) Citations (3)
References:
Abstract: In this paper, we determine some conditions of primitivity and bounds of exponents $\exp\hat\Gamma$ for some sets of digraphs $\hat\Gamma=\{\Gamma_0,\dots,\Gamma_{n-1}\}$ with vertices $0,\dots,n-1$. We obtain the following results. Suppose that, for each $i\in\{0,\dots,n-1\}$, the digraph $\Gamma_i$ has the Hamiltonian cycle $(0,\dots,n-1)$ and the arc $(i,(i+l)\mod n)$, where $n\geq l>1$. Then the set $\hat\Gamma$ is primitive if and only if $\operatorname{gcd}(n,l-1)=1$; in this case, $n-1\leq\exp\hat\Gamma\leq 2n-2$. Suppose each $\Gamma_i$ also has the arc $(i,(i+\lambda)\mod n)$, $n\geq\lambda>l>1$, $i\in\{0,\dots,n-1\}$. Then the set $\hat\Gamma$ is primitive if and only if $\operatorname{gcd}(n,l-1,\lambda-1)=1$; in this case, $\exp\hat\Gamma\geq(\sqrt{8n+1}-3)/2$ and if $\operatorname{gcd}(n,l-1)=1$, then the exponent is at most $n-1+\max\{b,n-b+1\}$, where $b=(\lambda-1)(l-1)^{\varphi(n)-1}\mod n$ and $\varphi(n)$ denotes Euler's totient function. At last, suppose $n$ is even and each $\Gamma_i$ has the cycle $(0,\dots,n-1)$ and the arc $(i,(i+l)\mod n)$ if $i$ is even, the cycle $(n-1,\dots,0)$ and the arc $(i,(i+\lambda)\mod n)$ if $i$ is odd. Then the set $\hat\Gamma$ is primitive and its exponent is at most $2n-2$ if $\operatorname{gcd}(n,l-1)=1$ or $\operatorname{gcd}(n,\lambda+1)=1$.
Keywords: primitivity of digraphs set, exponent of digraph, exponent of digraphs set.
Document Type: Article
UDC: 519.1
Language: Russian
Citation: Y. E. Avezova, “On primitivity of some sets of shift registers mixing digraphs”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 60–62
Citation in format AMSBIB
\Bibitem{Ave17}
\by Y.~E.~Avezova
\paper On primitivity of some sets of shift registers mixing digraphs
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 60--62
\mathnet{http://mi.mathnet.ru/pdma311}
\crossref{https://doi.org/10.17223/2226308X/10/25}
Linking options:
  • https://www.mathnet.ru/eng/pdma311
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p60
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025