Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 56–59
DOI: https://doi.org/10.17223/2226308X/10/24
(Mi pdma359)
 

Discrete Functions

Some decompositions for quadratic Boolean threshold functions

A. N. Shurupov

Moscow Technological University, Moscow
References:
Abstract: Arbitrary quadratic Boolean threshold functions $f$ defined by a quadratic form $w(x_1,\dots,x_n)=e(x_1,\dots,x_m)+a(x_{m+1},\dots,x_n)$ and a threshold $t$ are considered together with the quadratic forms $e$ and $a$ defined by the corresponding constant matrices $1_m$ and $a_{n-m}$. We propose a criterion for existence of a non-trivial decomposition of such a function $f$, namely: such a decomposition exists if and only if any of the following conditions holds:
1) $t<m^2$ and there exists $j$ in $\{1,\dots,n-m\}$ such that $\lfloor t\rfloor_e+a{(j-1)}^2\le t<\lceil t\rceil_e$;
2) $t>m^2$ and there exist $i$ in $\{1,\dots,m\}$ and $j$ in $\{1,\dots,n-m\}$ such that
$$ \max\{(i-1)^2+a(n-m)^2,m^2+a(j-1)^2\}\le t <i^2+aj^2; $$

3) $t>m^2$ and there exist $i$ in $\{1,\dots,m\}$, $j$ and $l$ in $\{1,\dots,n-m\}$ such that $j<l$ and
$$ \max\{(i-1)^2+a(l-1)^2,m^2+a(j-1)^2\}\le t<\min\{al^2,i^2+aj^2\}, $$
where $\lfloor t\rfloor_e=\max\{z\colon z=e(x),\ x\in\{0,1\}^m,\ z\le t\}$, $\lceil t\rceil_e=\min\{z\colon z=e(x),\ x\in\{0,1\}^m,\ z>t\}$.
Keywords: quadratic Boolean threshold functions, decomposition.
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. N. Shurupov, “Some decompositions for quadratic Boolean threshold functions”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 56–59
Citation in format AMSBIB
\Bibitem{Shu17}
\by A.~N.~Shurupov
\paper Some decompositions for quadratic Boolean threshold functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 56--59
\mathnet{http://mi.mathnet.ru/pdma359}
\crossref{https://doi.org/10.17223/2226308X/10/24}
Linking options:
  • https://www.mathnet.ru/eng/pdma359
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025