Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 13–17
DOI: https://doi.org/10.17223/2226308X/12/3
(Mi pdma418)
 

Theoretical Foundations of Applied Discrete Mathematics

Calculation of $3$-torsion ideal for some class of hyperelliptic curves

E. S. Malygina

Immanuel Kant Baltic Federal University, Kaliningrad
References:
Abstract: In the paper, we consider hyperelliptic curves of genus two defined by the Dickson polynomials. For such curves, we calculate the $3$-torsion ideal, namely we obtain the four generators of this ideal by using the Mumford–Cantor representation for the $3$-torsion divisor and by using of $\theta$- and $\wp$-functions.
Keywords: hyperelliptic curve, Dickson polynomial, $l$-torsion ideal, $l$-torsion divisor, modular equation.
Bibliographic databases:
Document Type: Article
UDC: 512.772.7
Language: Russian
Citation: E. S. Malygina, “Calculation of $3$-torsion ideal for some class of hyperelliptic curves”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 13–17
Citation in format AMSBIB
\Bibitem{Mal19}
\by E.~S.~Malygina
\paper Calculation of $3$-torsion ideal for some class of hyperelliptic curves
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 13--17
\mathnet{http://mi.mathnet.ru/pdma418}
\crossref{https://doi.org/10.17223/2226308X/12/3}
\elib{https://elibrary.ru/item.asp?id=41153839}
Linking options:
  • https://www.mathnet.ru/eng/pdma418
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025