Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 21–24
DOI: https://doi.org/10.17223/2226308X/12/5
(Mi pdma420)
 

Theoretical Foundations of Applied Discrete Mathematics

On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank $1$

E. M. Melnichuk, S. A. Novoselov

Immanuel Kant Baltic Federal University, Kaliningrad
References:
Abstract: In the paper, we study characteristic polynomials for some families of $p$-rank $1$ genus $2$ and $3$ hyperelliptic curves over finite field. $p$-Rank is an important invariant of the curves. It imposes restrictions on the coefficients of the characteristic polynomials and, therefore, on the order of the Jacobian. In this work, we distinguish several classes of $p$-rank $1$ curves among curves with authomorphims and find characteristic polynomials for these curves modulo $p$.
Keywords: hyperelliptic curves, $p$-rank, characteristic polynomial, authomorphism group.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00244
Bibliographic databases:
Document Type: Article
UDC: 512.772
Language: Russian
Citation: E. M. Melnichuk, S. A. Novoselov, “On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank $1$”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 21–24
Citation in format AMSBIB
\Bibitem{MelNov19}
\by E.~M.~Melnichuk, S.~A.~Novoselov
\paper On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 21--24
\mathnet{http://mi.mathnet.ru/pdma420}
\crossref{https://doi.org/10.17223/2226308X/12/5}
\elib{https://elibrary.ru/item.asp?id=41153844}
Linking options:
  • https://www.mathnet.ru/eng/pdma420
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025