Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 41–44
DOI: https://doi.org/10.17223/2226308X/12/11
(Mi pdma426)
 

Theoretical Foundations of Applied Discrete Mathematics

Minimal representative set for a system of frequency classes of underdetermined words

L. A. Sholomov

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
References:
Abstract: Let a finite set $M$ and a system $\mathcal{T}$ of some non-empty subsets $T\subseteq M$ be given. Associated with the sets $M$ and $\mathcal{T}$ are the alphabets $A_0=\{a_i,\,i\in M\}$ of basic symbols and $A=\{a_T,\; T\in\mathcal{T}\}$ of underdetermined symbols. The set of all words of length $l$ in the alphabet $A$, in which each symbol $a_T$ is present $r_T$ times, $\sum\limits_{T\in\mathcal{T}} r_T=l$, is called frequency class and denoted by $\mathcal{K}_l(\mathbf{r})$ where $\mathbf{r}=(r_T,\,T\in\mathcal{T})$. The specification of the word $v$ in the alphabet $A$ is any word obtained from $v$ by replacing each symbol $a_T$ with some $a_i$, $i\in T$. The specification of the set $V$ of words in the alphabet $A$ is any set of words in the alphabet $A_0$, containing for each word $v\in V$ some specification of it. The class $\mathcal{K}_{l_1}(\mathbf{r}_1)$ is considered to be more representative than the class $\mathcal{K}_{l_2}(\mathbf{r}_2)$, if $l_1\ge l_2$ and, whatever the specification of the class $\mathcal{ K}_{l_1}(\mathbf{r}_1)$, the set of beginnings of the length $l_2$ of all words from the specification forms some specification for the class $\mathcal{K}_{l_2}(\mathbf{r}_2)$. Let $\mathfrak K$ be some system of frequency classes. A subsystem of $\mathfrak K$ is called a representative set of the system $\mathfrak K$ if, for any $\mathcal{K}_l(\mathbf{r})\in\mathfrak K$, the subsystem contains a class that is more representative than $\mathcal{K}_l (\mathbf{r})$. The paper presents a method for finding the smallest representative set for an arbitrary system of frequency classes. This setting arises in the problems of underdetermined data compression and of underdetermined functions implementation.
Keywords: underdetermined data, specification, frequency class, representative set.
Bibliographic databases:
Document Type: Article
UDC: 519.728
Language: Russian
Citation: L. A. Sholomov, “Minimal representative set for a system of frequency classes of underdetermined words”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 41–44
Citation in format AMSBIB
\Bibitem{Sho19}
\by L.~A.~Sholomov
\paper Minimal representative set for a system of frequency classes of underdetermined words
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 41--44
\mathnet{http://mi.mathnet.ru/pdma426}
\crossref{https://doi.org/10.17223/2226308X/12/11}
\elib{https://elibrary.ru/item.asp?id=41153860}
Linking options:
  • https://www.mathnet.ru/eng/pdma426
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025